《逻辑学》作者:黑格尔_第61頁
在线阅读
上─页第61/73页 下─页
满的定量。但是,这
种不完满性是在它们那里的否定;这一点并不是依据两个定量一般的变化,
按照一般变化,一个定量(每个定量都是这两个定量的一个)可以采用一切
可能的大小,这一点却是依据以下的规定,即,假如一个定量变化,另一个
定量也按比例增减:如已经说过的,这意味着只有一端、即单位能改变其定
量,而另一端、即数目则仍然是单位的同一个定量,但前者作为定量,尽管
愿意如何变化便如何变化,它也同样只能当作单位,因此,每一端只是定量
的两个环节之一,属于它的特有的独立性,自身被否定了;在这种质的联系
方面,这两个环节必须建立为彼此否定的。

指数应该是完满的定量,因为在指数中,同端的规定性合而为一了;但
实际上,指数作为商数,本身只有数目的值,或单位的值。在这里,没有任
何规定性表明比率的哪一端必须当作单位,哪一端必须当作数目;如果一端、
定量B,被作为单位的定量A 来测量,那么,商数C 便是这样的单位的数目;
但假如A 本身被认为是数目,那么,商数C 就是数目A 为定量B 所要求的单
位;因此,这个商数作为指数,并没有被建立为它应该是的东西,——即比
率的规定者或说比率的质的统一。它之能被建立为那样,只有由于它具有成
为单位与数目这两个环节的统一那样的值。因为这两端,固然就像在外现的
定量中、即在比率中所应该是的那样呈现为定量,但同时也只在它们作为比
率两端所应该具有的攸之中,即是不完满的定量,只能算做这些质的环节之
一;所以,它们必须以它们的这种否定而建立。这样,便发生了一个对规定
较符合、较实在的比率,在这个比率里,指数具有它们的乘积的意义;按照
这种规定性,这个比率便是反比率。

乙、反比率

1.现在达到的比率是被扬弃了的正比率;它曾经是直接的,因而还不是
真正规定的比率;现在,规定性是用这样的办法增补起来的,即:把指数算
作乘积,算作单位与数目的统一。就直接性而言,指数曾经漠不相关地既可
以被当作单位也可以被当作数目,如以前所指出的那样;因此,指数过去也
只是一般的定量,因而,宁可规是数目,一端曾经是单位,须当作一,对于
这一端说来,另一端便是固定的数目,同时也是指数;所以指数的质曾经只
是这个被认为是固定的定量,或者不如说,这个固定的东两只有定量的意义。
现在在反比率中,指数作为定量,同样被当作是直接的,并且可只是任
何固定的定量;但这个定最对于比率中别的定量的一,并不是固定的数目;
这个以前的固定的比率,现在倒是被当作可变化的;如果别一定量被当作一
端的一,那么,另一端就不再是前者的单位的同一个数目了。在正比率中,
这单位只是两端所共同的:它在另一端中,即在数目中延续自身;自为的数
目本身或指数,对单位是漠不相关的。

但是,在比率现在的规定性中,数目对于一说来,构成了比率的另一端,
它本身相对于这个一而变化;每当另外一个定量被采用为一时,数目也就变
成另外一个数目。因此,虽然指数现在只是直接的,只是被任意地当作固定
的定量,然而指教并没有作为这样的定量在比率的一端中保持自身,这一端
是可变化的,因而两端的正比率也是可变化,所以在现在的比率中,指数作
为进行规定的定量,便被建立为否定自己的比率的定量,是质的东西,是界
限,以致质的东西突出了自己对量的东西的区别。——在正比率中,两端的
变化只是两端共同的单位所采用的定量的变化;一端增减多少,另一端也同
样增减多少,比率自身对这种变化漠不相关,变化对比率是外在的。在反比
率中,变化尽管就漠不相关的量的环节说,也同样是任意的,但是,变化保
持在比率之中,并且这种任意的量的超越,也被指数的否定的规定性、被界
限给限制住了。

2.反比率的这种质的本性,必须在其实在化中进一步加以考察:其中所
包含的肯定的东西与否定的东西的错综复杂情况,必须加以分析。——定量
被建立为在质方面的定量,这就是说,它自己规定自己,它自身表现为自己
的界限。因此,第一,定量是作为单纯规定性的一个直接的大小,是作为有
的、肯定的定量的整体。第二,这种直接的规定性同时又是界限,因此区分
为两个定量,它们首先是互为他物的:但是,作为它们的质的规定性,而且
是完满的规定性,这就是单位与数目的统一,是乘积,而它们则是乘积的因
数。一方面,它们的比率指数在它们之中是自身同一的,是单位与数目的肯
定物,就此而言,它们便是定量;另一方面,作为在它们那里建立起来的否
定,指数又是在它们那里的统一,按照这种统一,它们每一个都是直接的、
有界限的一般定量、而且是这样的有界限的东西,即,它只是自在地与它的
他物同一。第三,作为单纯的规定性,指数是它所区分的两个定量的否定统
一,并且是两定量互相划界的界限。

依据这些规定,指数内的两个环节便相互划界限,并互为否定物,因为
指数是它们的规定的统一,一个环节大多少,另一个环节便小多少;在这种
情况下,每一个环节所具有的大小就像在自身那里具有另一环节的大小那
样,就具有另一环节所缺少的大小那样。因此,每个大小都用这样否定的方
式在另一个大小中延续自身;无论它是多大的数目,在另一个大小中作为数
目,它都扬弃了,而它之所以为大小,仅仅是由于否定或界限,这个界限乃
是在这个大小那里由另一大小建立的。每一个大小都以这种方式包含着另一
个大小,并且在另一个大小那里被测量,因为每个大小都应该是其他的大小
所不是的那样的定量;另一个大小,对每个大小的值来说,是必不可少的,
因而,对每个大小也是不可分离的。

每个大小在另一个大小中的这种连续性,构成了统一的环节,由于这种
统一,两个大小才成为一个比率——这种统一是一个规定性或单纯界限,即
是指数。这个统一、这个整体,构成每个大小的自在之有,与其当前的大小
不同;其所以依照当前大小而有每一环节,只是由于这种大小从共同的自在
之有、或整体中另一大小那里退出了。①但是,它只有在它与自在之有相等时,
它才能够从另一大小那里退出,它在指数那里有它的最大值,这个指数按我
们已舰指出的第二个规定来说,就是它们相互划界的界限。由于每个大小只
有就它对另一个大小划界,因而也被另一个大小划界而言,才是比率的环节,
所以当它与它的自在之有相等时,它就丧失了它的这种规定;在这里,另一
个大小不仅变成了零,而且自身也要消失,因为它不是单纯的定量,而是只
有作为那样的比率环节,它才是它所应该是的那样的东西。于是,每一端都
是作为它们的自在之有,即整体(指数)的统一这种规定与作为比率环节的
另一个规定的矛盾;这个矛盾又是一个有新的特殊形式的无限性。
┅┅網┅
① 这里是说在反比率中每一项应有的大小,和它本身的具体大小不同,它的具体大小是就离开了比率另一
项说的。——译者

指数是比率两端的界限,在界限中,比率的两端彼此相互消长:照肯定
的规定性——作为定量的指数——来说,比率的两端不能等于指数。作为它
们相互限制的极限,指数是:(甲)它们的彼岸,它们无限地接近这个彼岸,
但不可能达到。它们在这种无限中接近彼岸,这种无限是无限进展的坏的无
限;这种无限本身是有限的,在它的对方、在比率的两端和指数的有限性中,
有其限制;因此,它只是接近而已。但是,(乙)坏的无限在这里同时被建
立为它真正是什么,即只是一般否定的环节,根据这个环节,指数对比率的
不同定量,是作为自在之有的这种单纯的界限;这些不同定量的有限性,作
为单钝可变的东西,与这个自在之有是有关的,但是自在之有作为它们的否
定,又绝对与它们有差异。于是,这个为它们只能接近的无限的东西,同时
又是肯定的此岸,是当前现在的——即指数的单纯定量。在这里,便达到了
比车两端所带有的彼岸;它自在地是比率两端的统一,因而,自在地是每一
端的另一端:因为每一端都仅仅具有另一端所没有的值,所以,每一端的全
部规定,都包含在另一端之中;它们的这种自在之有,作为肯定的无限,就
单纯是指数。

3.结果便发生了反比率到另一个规定的过渡,与它最初所具有的规定不
同。这个规定就在于:一个直接的定量,同时又对另一个定量有关系,它增
大多少,另一个定量便减小多少,这个定量之所以为这个定量,乃是由于它
对另一定量的否定态度;同样,一个第三个大小,就是它们这种变大的共同
限制。在这里,这种变化与作为固定界限的质的东西相反,是它们的特殊性;
它们具有变量的规定,那个固定的东西对于变量说来,就是无限的彼岸。
但是,已经表现出来和我们必须加以概括的规定,不仅仅在于:这个无
限的彼岸同时又是现在的定量,是任何一个有限的定量,而且在于:它的固
定性,——它通过这种固定性,对于量的东西,就是这样的无限的彼岸,并
且这种固定性,就是仅仅作为抽象的自身关系的有的质,——把自己发展为
它自身在它的他物中的中介,即比率的有限物。这里所包含的普遍的东西,
就在于:作为指数的整体,一般就是两个项彼此划界的界限,即否定的否定,
因而无限,这种对自身的肯定关系,被建立起来了。更精密的规定是:指数
作为乘积,已痤自在地是单位与数目的梳一,而两项的每一项只是这些环节
之一;因而,指数自身包含单位与数目,并在它之中自在地自己与自己相关。
但在反比率中,区别发展为量的事物的外在性;质的东西不单纯是固定的,
也不仅是直接在自身中包含着诸环节,而且在外在之有的他有中,自己与自
己聚集在一起。这种规定在业已出现的环节中,把自己突出为结果。指数既
然是作为自在之有而产生的,其环节也
上─页 下─页